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Abstract 

Transport phenomena occur frequently in industrial problems. Most of the turbulent transport properties can be directly 
associated with the turbulent energy dissipation rate; hence it is a very significant parameter in the design of chemical processing 
equipment. To develop a better chemical processing equipment design, a thorough knowledge of the effect flow structure on 
local turbulence parameters like turbulent kinetic energy, eddy diffusivity and the energy dissipation rate are required. 
Turbulence is heterogeneous in most of the process equipment. Hence, the use of spatial average energy dissipation rate causes 
error in modelling of turbulent transport processes. In this present work, particle image velocimetry (PIV) is used to obtain the 
energy spectrum from grid generated homogeneous turbulence velocity data. The model of energy spectrum given by Kang et al. 
(2003) has been fitted to this energy spectrum using energy dissipation rate. A different approach, based on a third order structure 
function and velocity gradient technique has been used to compute the energy dissipation rate. The model predictions have been 
verified by experimental PIV velocity data from oscillating grid apparatus.  

© 2014 The Authors.Published by Elsevier Ltd. 
Selection and peer-review under responsibility of the Department of Mechanical Engineering, Bangladesh University of 
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1. Main text  

The majority of indirect methods used to calculate energy dissipation rate,ε, require velocity data. The four main 
approaches include equation based on dimensional analysis, equation based on spatial velocity derivative, fitting a 
model spectrum to experimental energy spectrum and use of Karman-Howarth equation to fit experimental structure 
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function data. Each method involves some approximation based on theory of turbulence. The selection of a 
particular method to calculate ε depends on the validity of assumptions made by that particular method for the flow 
situation under consideration. Sometimes, it would be necessary to estimate ε using more than one method to cross 
check the value predicted by either method. Such parallel estimation also facilitates calculation of uncertainty in the 
value of ε calculated. 

To assist with such a selection, it was thought desirable to put all the four methods to test on velocity data from 
an apparatus where the flow field represents homogeneous and isotropic turbulence. Whilst a few publications in 
published literature describe estimation of turbulent energy dissipation rate in geometries like stirred tank Gabriele 
et al. [3] and submerged jet Deshpande et al. [1]; there are very few papers which test different theories to calculate 
energy dissipation rate in geometry with controlled, homogeneous and isotropic turbulence. One such geometry 
which facilitates experimentalists to generate homogeneous and isotropic turbulence is oscillating grids Doroodchiet 
al. [2]. It has zero net mass flow through the system. Also, the turbulence intensity and energy dissipation rate can 
be easily controlled by changing the oscillation frequency of the grid. Considering these advantages, oscillating grid 
assembly is used in the present work as a test case.  

All of the methods to calculate ε described above require velocity data. Particle image velocimetry allows 
measurement of 2D velocity vector field over a plane in the flow domain. It is possible to calculate important 
quantities like integral length scale, velocity gradient, structure functions and spatial energy spectrum from PIV 
data. Therefore, in the present work we use PIV to get 2D velocity field in the oscillating grid apparatus. In 
summary, there are four different methods to calculate ε from velocity data. Each one of them has limitations 
depending on the assumptions in underlying theory. In the present work, we put these four methods to test on the 2D 
velocity data measured by PIV in an oscillating apparatus, which generates isotropic and homogeneous turbulence. 
Specific aims of the present work are: 

 Obtain 2D PIV velocity data for different oscillating grid conditions (with different energy dissipation 
rate).  

 Compute the time averaged 1D energy spectrum for flow fluid to obtain the 3D energy spectrum, which 
is then fitted using the relationship of Kang et al. [6] to determine the specific energy dissipation rate. 

 Apply 3rd order structure function analysis to the 2D velocity fluctuation data to determine the energy 
dissipation rate. 

 Estimate energy dissipation rate directly from spatial velocity derivative. 
 Compare both predictions for specific energy dissipation rate with that estimated by direct analysis (eq. 

3) of the experimental data. 
 Comment on the merits for each of the methodologies for determination of . 

2. Experimental Section 

The flow system shown in Fig. 1 has been described in 
Hoque et al. [5] and was the same as that used previously by 
Doroodchiet al. [2]. It consisted of oscillating grids in a glass 
tank filled with water. The width of tank was 300 mm.The 
grids size was 150 mm×150 mm and the grids were oriented 
vertically.The tank was supported by a steel bench with 
adjustable height. The gridsweremade of aluminum with bar 
thickness of 6mm and 30mm spacing between the bars. The 
overall open area of gridwasapproximately 64%. Stepper 
motors were used to drive the connected through eccentric 
cams to generate grid oscillation. The stroke length of the oscillation was 18 mm, while the separation between two 
grids was 110 mm. The cranks were adjusted to have 180  phase lag, causing grids to move towards each other 
during first half of the cycle and away from each other during the other half cycle. The stroke length and the grid 
separation were adjusted to match those used by Doroodchiet al. [2]. 

Fluorescent polystyrene-DVB particles (Kanomax, Japan) with 30 micron mean diameter were used as PIV 
tracer particles. Tests were conducted with grid oscillation frequencies of 2.5 and 4 Hz, respectively. 
Thestrokelength and the distancebetween the gridswere kept the same for both the runs.A high speed digital PIV 
technique was employed in this study to measure the longitudinal (x component) and transverse (y component) 
velocity of water. Phantom v640 camera was used with resolution of 1600×1600 pixels. The image recording 
frequency was 400 Hz. 4000 images were recorded in each PIV run. PIV processing was done with 
DantecDynamicstudio software. The measurement plane was located at the center of the tank. Field of view was 60 
mm × 60 mm, and vector spacing was 0.6 mm.  
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3. Mathematical Model for Calculating Energy Dissipation Rate 

Theoretically, ε can be calculated from an exact expression in terms of viscous stress by Hinze[4]. For a three 
dimensional flow field, εis given by the following equation:  

                                    (1) 

In case of 2D PIV measurements, we have only two components of velocity measured in two directions, which 
yield four components of velocity gradient tensor out of 9 required by the above equation. In order to calculate ε 
using four components of velocity gradient tensor, above equation is modified using the assumption of isotropy as 
follows: 

(2) 

The accuracy of ε is hampered by the fact that we approximated 5 components of velocity gradient tensor with 
the isotropy assumption. Besides the isotropy assumption, the numerical error in estimation of the velocity gradient 
from PIV data also adds to the uncertainty in the value of ε. 

An alternative to calculation of ε from velocity gradients is the following equation based on the dimensional 
analysis Hinze[4]:  

 (3) 

Where  is the RMS fluctuating velocity,  is the integral length scale and  is the proportionality constant. 
The value of k varies between 0.5-2 by White et al. [9].ε can be calculated using eq. (3) by assuming a value of k 
suitable for the nature of flow under consideration. In the current work, we are using k=1 to calculate ε.  

Above methods facilitate direct calculation of ε from velocity data. Although these methods are straightforward 
to implement, there is a level of uncertainty in the value of ε estimated using them. As an alternative, the methods 
based on theory of turbulence can be used. Two such methods were used in the current work. First one is based on 
the energy spectrum and second one uses the Karman-Howarth equation of structure function transport. Both of 
these methods are statistical and are less susceptible to noise. 

3.1. εfromEnergy Spectrum  

Energy spectrum is the distribution of turbulent kinetic energy between eddies of different size. Eddy size is 
represented by its wavenumber ( ,λ is the wavelength of eddy). Eddy energy for respective wavenumber is 
calculated using FFT of velocity data. The most popular result about energy spectrum is the Kolmogorov -5/3 power 
law fits the spectrum for the inertial subrange. It is expressed as:  

       (4) 

Where C is the Kolmogorov constant and its value is 1. If the values of wavenumber κ and E(κ) are known, εcan 
be calculated using eq. 4. E(κ) is the three dimensional (3D) energy spectrum, which represents the integral of eddy 
energies along a sphere of radius κ in wavenumber space at the measurement point. Experimentally, the energy 
spectrum is calculated by taking FFT of the velocity space or time series. Such a spectrum is one dimensional (1D) 
in wavenumber space since the Fourier transform is applied in one direction only. Hence, eq. 4 cannot be directly 
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fitted to experimental spectrum to calculate ε. 1D spectrum can be calculated from 3D spectrum by using the 
following equation:  

                                                                                                                        (5) 

Where E(κ) is the 3D energy spectrum function, κ is the resultant wavenumber (of wave number components in 
three directions: κ1, κ2, κ3), κ1 is the component of wavenumber in principal flow direction. E(κ) can be 
Kolmogorov’s power law spectrum as in eq. 4. However, eq. 4 is valid only for a small range of κ called the inertial 
subrange. The following model for E(κ) proposed by Kang et al. [6]: 

          (6) 

Where are adjustable parameters. The values of αi and ε are adjusted such that the model 
spectrum fits the experimental spectrum. The steps of curve fitting are as follows: 

1. Experimental E11(κ) is calculated by taking FFT of space series of u velocity in x direction from PIV data. 
It is averaged over each PIV vector field and over 4000 such vector fields. 

2. Model E(κ) is calculated from eq. 6 with initial guess values of αi and ε. 
3. Model E11(κ)is calculated using E(κ) from step 2 and error in estimation of E11(κ) is calculated. 
4. Values of αi and ε are changed and step 2 and 3 are repeated till the model E11(κ) curve fits the experimental 

E11(κ). 

3.2.εfrom Karman-Howarth equation 

Another approach to calculation of ε with strong theoretical grounds is using Karman-Howarth equation 
(Lindborg, [7]; Pope,[8]; Kang et al. [6]). The Karman-Howarth equation is: 

           (7) 

where  and  are second and third order structure functions, defined as: 

                                                                                                            (8) 

                                                                                                          (9) 

Kolmogorov’s second similarity hypothesis  and the  model for the decay of the 
dissipation can beusedto calculate the time dependent term . Substituting these 
two expressions in eq.7, after considerable manipulations we get the following equation:  

                                                                                                   (10) 

Here, .And is Taylor microscale.Also, according to literature the values of 
 and  were varied in the range 1.6-2.3 and 1.6-2.1, respectively. The steps to calculate using eq. 10 are as 

follows:  
1. Experimental Duuu values for different vector spacing ‘r’ are calculated using the PIV vector field. The 

vector field was 100×100 vectors. r was varied from 1 to 50 to satisfy Nyquist sampling criteria.urms was 
also calculated from PIV dataset.  

2. Using an initial guess of ε, λ andηwere calculated. The model values of Duuu as a function of r were 
calculated from eq. 10 using initial guess values of ε, C1, Cε2. 
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Fig. 4.Karman-Howarth Model to calculate energy dissipation 
for PIV data. 
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Fig. 3. Longitudinal energy spectra (solid lines) with the 
experimental data at different frequency using Kang et al. 
(2003) model equation. 

3. The model Duuu was compared with experimental Duuu and the error in estimation was calculated. 
4. Steps 2 and 3 were repeated until the error in estimation of Duuuwas minimized.  

4. Results and Discussion 

To establish the turbulence in the flow field in the current 
experiment is homogeneous and isotropic, we compare the 
energy spectra in both the longitudinal (x) and transverse (y) 
directions.Fig. 2 shows such spectra for grid oscillation 
frequency of 4 Hz. Fourier transform was used to evaluate the 
energy of eddies as a function of frequency. The wavenumber 
was calculated using . Boththe longitudinal and 
transverse energy spectra follow similar trend in the inertial sub 
range and overlap within experimental accuracy. Such overlap 
highlights the fact that velocity field in the current experimental 
system represents nearly homogeneous and isotropic 
turbulence. 

In another approach we used the model energy spectrum 
given by Kang et al. (2003) with the procedure described in 

section 3.1 to calculate the energy dissipation 
rate.Fig. 3 shows the fitted energy spectrum for grid oscillation frequency of 2.5 and 4 Hz. The optimum curve fit 
parameters are: , ,  and  The 
energy dissipation rate was computed as 0.003 and 0.050 for the grid frequency of 2.5 and 4 Hz respectively. 

The third order structure function was calculated from PIV data. The model curve in eq. 10 was fitted to the 
experimental data using procedure described in section 3.2. Fig. 4 shows the plot of , using the value of ε 
determined by curve fitting. The peak value of  is close to 4/5 in accordance with Kolmogorov’s similarity 
hypothesis. The peak values are below 0.8 (0.57 and 0.78 respectively). The energy dissipation rate was computed 
as 0.001 and 0.020 for the grid frequency of 2.5 and 5 Hz respectively.   

The histogram of energy dissipation rate calculated using the velocity gradient method for the grid oscillating 
frequency of 2.5 and 4 Hz has been plotted in Fig. 5.  The mean energy dissipation rate was found to be 0.0014 and 
0.0046 respectively. The value is close to the one estimated using RMS velocity and integral length scale. While the 
results for the present case are good, it should be noted that this method is far more sensitive to noise in PIV data 
than the energy spectrum or structure function method. The spatial resolution of PIV should be of the order of 

Fig. 2. Comparison of the longitudinal and transverse 
energy spectrum for grid generated turbulence system
( . 
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Fig. 6. Comparison of the transverse energy spectra (solid lines) 
with the experimental data using Kang et al. (2003) model. 

Kolmogorov length scales for the velocity gradient method to give good estimates, which is not practical in every 
case. To get further insight into the merit of energy spectrum model for the present case, the 1D energy spectrum in 
the transverse (y) direction was calculated using same curve fit parameters and ε values as those used to plot Fig. 3. 
The equation to calculate E22(κ1)  from E11(κ1) is as follows:  

        (11) 

E22(κ1) is plotted in Fig. 6 along with experimental E22(κ1) data. The experimental and model spectra match for 
both of the grid oscillation frequencies. Such agreement highlights the strength of the model energy spectrum as it 

describes the underlying physics properly. Hoque et al. [5] used the Pope [8] model with the same method described 
in section 3.1 but could not get a similar fit to experimental data for both the E22(κ1) from E11(κ1) using same curve 
fit parameters. It would seem, therefore, that the model spectrum by Kang et al. [6] provides superior results for 
prediction of energy spectrum. 

The specific energy dissipation rate values calculated by all four methods for different grid frequencies are 
reported in Table 1. The predicted value of ε is different for each method. The ε values predicted by RMS velocity, 
velocity gradients and structure functions are comparable. The ε values predicted using the energy spectrum is 
higher compared to those for the other three 
 
Table 1.  Comparison table for energy dissipation rate 

Frequency,  
(Hz) 

r.m.s. 
velocity, 

 
(mm/s) 

Integral 
length 
scale, 
(mm) 

Epsilon,  
Experimental Value 

(Approx.) w/kg 

Epsilon,  
Velocity Gradient 

Method; w/kg 

Epsilon  
Karman-Howarth 

Method; w/kg 

Epsilon, , 
Functional 

Method ; w/kg 

2.5 9.60 1.31 0.0007 0.0014 0.0010 0.0030 
4 22.70 1.01 0.0115 0.0046 0.0070 0.0500 
5 29.23 1.02 0.0244 0.0109 0.0200 0.0600 

6.25 37.88 1.13 0.0482 0.0341 0.0300 0.2000 

The deviation of predicted ε values for the spectrum might be attributed to the numerical technique to evaluate 
experimental energy spectrum and the limitation on the number of images used for time averaging the spectrum 

5. Conclusions 

The energy dissipation rate in thegridgeneratedturbulencecalculated using RMS velocity and integral length 
scale, Velocity gradients, Energy spectrum and Karman-Howarth equation.The values of εpredicted by different 
methods were found to be in agreement with one another.Thespectralslope of-5/3was found to be present inthe 
energy spectrum in the inertial sub range. The experimental longitudinal and transverse spectra for both velocity 
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components overlap, indicating homogeneous and isotropic turbulence. Also, the peak value of  was found 
to be close to 4/5 confirming Kolmogorov’s similarity hypothesis. For same local energy dissipation rate the 
longitudinal and transverse energy spectrum from Kang et al. [6] model gives better result than original Pope [8] 
model. 
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